Posted On
Posted By admin

Introduction to the Modern Theory of Dynamical Systems. Front Cover · Anatole Katok, Boris Hasselblatt. Cambridge University Press, – Mathematics – Introduction to the modern theory of dynamical systems, by Anatole Katok and. Boris Hasselblatt, Encyclopedia of Mathematics and its Applications, vol. Anatole Borisovich Katok was an American mathematician with Russian origins. Katok was the Katok’s collaboration with his former student Boris Hasselblatt resulted in the book Introduction to the Modern Theory of Dynamical Systems.

Author: Virg Akilar
Country: Bahamas
Language: English (Spanish)
Genre: Relationship
Published (Last): 6 March 2007
Pages: 293
PDF File Size: 6.10 Mb
ePub File Size: 6.70 Mb
ISBN: 610-4-41773-266-8
Downloads: 84511
Price: Free* [*Free Regsitration Required]
Uploader: Goltirr

In he emigrated to the USA.

Readers need not be familiar with manifolds or measure theory; the only prerequisite is a basic undergraduate analysis course. It includes density of periodic points and lower bounds on their number as well as exhaustion of topological entropy by horseshoes.

The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbits structure.

Stability, Symbolic Dynamics, and Chaos R. This book is considered as encyclopedia of modern dynamical systems and is among the most cited publications in the area. In kafok, he became a fellow of the American Mathematical Society. Clark RobinsonClark Robinson No preview available – This theory helped to solve some problems that went back to von Neumann and Kolmogorovand won the prize of the Moscow Mathematical Society in Katok’s collaboration with his former student Boris Hasselblatt resulted in the book Introduction hxsselblatt the Modern Theory of Dynamical Systemspublished by Cambridge University Press in My library Help Advanced Book Search.


Read, highlight, and take notes, across web, tablet, and phone. Katok’s works on topological properties of nonuniformly hyperbolic dynamical systems. The best-known of these is the Katok Entropy Conjecture, which connects geometric and dynamical properties of geodesic flows. Introduction to the Modern Theory of Dynamical Systems. Anatole KatokBoris Hasselblatt. The authors introduce and hasselvlatt develop the theory while providing researchers interested in applications Skickas inom vardagar.

Liquid Mark A Miodownik Inbunden. References to this book Dynamical Systems: Danville, PennsylvaniaU.

From Wikipedia, the free encyclopedia. Among these are the Anosov —Katok construction of smooth ergodic area-preserving diffeomorphisms of compact manifolds, the construction of Bernoulli diffeomorphisms with nonzero Lyapunov exponents on any surface, and the first construction of an invariant foliation for which Fubini’s theorem fails in the worst possible way Fubini foiled.

It covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory.

Hasselblatt and Katok

Retrieved from ” https: Anatole Borisovich Katok Russian: While in graduate school, Katok together with A. It contains more than four hundred ktaok exercises. Modern Dynamical Systems and Applications. Account Options Sign in. Katok’s paradoxical example in measure theory”. Stepin developed a theory of periodic approximations of measure-preserving transformations commonly known as Katok—Stepin approximations. Cambridge University Press- Mathematics – pages.


This book provides the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. In the last two decades Katok has been working on other rigidity phenomena, and in collaboration with several colleagues, hasselblatt contributions to smooth hasselblatf and geometric rigidity, to differential and cohomological rigidity of smooth actions of higher-rank abelian groups and of lattices in Lie groups of higher rank, to measure rigidity for group actions and to nonuniformly hyperbolic actions of higher-rank abelian groups.

Books by Boris Hasselblatt and Anatole Katok

Important contributions to ergodic theory and dynamical systems. With Elon Lindenstrauss and Manfred Einsiedler, Katok made important progress on the Littlewood conjecture in the theory of Diophantine approximations. This page was last edited on 17 Novemberat The book begins with a discussion of several elementary but fundamental examples.